modeva.TestSuite.interpret_local_linear_fi#

TestSuite.interpret_local_linear_fi(dataset: str = 'test', sample_index: int = 0, centered: bool = True)#

Calculate and visualize local feature importance for a specific data sample using linear approximation.

This function computes the local feature importance scores for a given sample from the specified dataset using a linear model. It visualizes the importance scores alongside the original feature values and coefficients, providing insights into the contribution of each feature to the model’s prediction.

Parameters:
  • dataset ({"main", "train", "test"}, default="test") – Specifies which dataset partition to use for the analysis.

  • sample_index (int, default=0) – Index of the specific sample in the selected dataset to analyze.

  • centered (bool, default=True) – If True, features are centered by subtracting their mean values before calculating importance scores.

Returns:

A container object with the following components:

  • key: “interpret_local_linear_fi”

  • data: Name of the dataset used

  • model: Name of the model used

  • inputs: Input parameters

  • value: Dictionary containing:

    • ”Name”: List of feature names

    • ”Importance”: Feature importance scores

    • ”Values”: Original feature values

    • ”Coefficients”: Linear coefficients

  • table: DataFrame containing feature names, scores, values, and coefficients

  • options: Dictionary of visualizations configuration for a horizontal bar-stem plot where x-axis is importance, and y-axis is the feature names. Run results.plot() to show this plot.

Return type:

ValidationResult

Examples

Logistic Regression (Classification)

Logistic Regression (Classification)

Linear Regression (Regression)

Linear Regression (Regression)

MoReLUDNN Classification

MoReLUDNN Classification

MoReLUDNN Regression

MoReLUDNN Regression