modeva.TestSuite.interpret_llm_pc#

TestSuite.interpret_llm_pc(dataset: str = 'test')#

Generate and visualize parallel coordinate plots for Local Linear Model (LLM) coefficients.

This function calculates LLM statistics, feature importance, and creates a parallel coordinate plot to visualize the relationships between features and their coefficients across different local linear models.

Parameters:

dataset ({"main", "train", "test"}, default="test") – The data set used for calculating the explanation results.

Returns:

A container object with the following components:

  • key: “llm_pc”

  • data: Name of the dataset used

  • model: Name of the model used

  • inputs: Input parameters

  • value: Dictionary containing:

    • ”Names”: Feature names

    • ”Bias & Weights”: LLM coefficients including bias terms

    • ”STD_DEV”: Standard deviations of LLM predictions

    • ”Importance”: Feature importance scores

  • options: Dictionary of visualizations configuration for a parallel coordinate plot where x-axis is feature names, and y-axis is the local linear coefficients. Run results.plot() to show this plot.

Return type:

ValidationResult

Examples

MoReLUDNN Classification

MoReLUDNN Classification

MoReLUDNN Regression

MoReLUDNN Regression