modeva.TestSuite.interpret_moe_cluster_analysis#

TestSuite.interpret_moe_cluster_analysis(dataset: str = 'test', metric: str = None)#

Analyze and summarize characteristics of mixture-of-experts clusters.

Parameters:
  • dataset ({"main", "train", "test"}, default="test") – The dataset to analyze cluster assignments.

  • metric (str, metric=None) –

    Model performance metric to use.

    • For classification (default=”AUC”): “ACC”, “AUC”, “F1”, “LogLoss”, and “Brier”

    • For regression (default=”MSE”): “MSE”, “MAE”, and “R2”

Returns:

Contains cluster analysis results:

  • key: “interpret_cluster_analysis”

  • data: Name of the dataset used

  • model: Name of the model used

  • inputs: Input parameters

  • value: Nested dictionary containing the (“<expert_id>”, item) pairs for each group, and the item is also a dictionary with:

    • ”size”: Number of samples in cluster

    • ”score”: The performance metric of this cluster

    • ”center”: Cluster centroid coordinates

    • ”data_info”: Sample indices for in/out of cluster comparison, which can be further used for data distribution test, e.g.,

      data_results = ds.data_drift_test(**results.value[2]["data_info"])
      data_results.plot("summary")
      data_results.plot(("density", "MedInc"))
      
  • table: DataFrame with performance metrics for each cluster

  • options: Dictionary of visualizations configuration. Run results.plot(name=xxx) to show all plots; Run results.plot(name=xxx) to display one preferred plot; and the following names are available:

    • ”cluster_performance”: Bar plot visualizing the performance scores of final MOE model against each cluster.

Return type:

ValidationResult

Examples

Mixture of Expert (MoE) Classification

Mixture of Expert (MoE) Classification

Mixture of Expert (MoE) Regression

Mixture of Expert (MoE) Regression