modeva.TestSuite.interpret_llm_profile#

TestSuite.interpret_llm_profile(feature: str = None, dataset: str = 'test')#

Calculate local feature importance for a specific feature using LLM profiles.

This function computes the local feature importance for a given feature by analyzing the LLM profiles and visualizes the results. It retrieves the necessary data, calculates the feature importance, and generates a plot that illustrates the distribution of feature importance across different LLMs.

Parameters:
  • feature (str) – Feature name to explain.

  • dataset ({"main", "train", "test"}, default="test") – The data set used for calculating the explanation results.

  • nllms (int, default=30) – The number of top LLMs to show.

Returns:

A container object with the following components:

  • key: “llm_profile”

  • data: Name of the dataset used

  • model: Name of the model used

  • inputs: Input parameters

  • value: Dictionary containing:

    • ”feature”: Name of the feature being analyzed

    • ”sample_idx_by_llms”: Sample indices grouped by LLMs

    • ”feature_names”: List of feature names

    • ”feature_importance”: Feature importance scores

  • options: Dictionary of visualizations configuration for a LLM profile plot. Run results.plot() to show this plot.

Return type:

ValidationResult

Examples

MoReLUDNN Classification

MoReLUDNN Classification

MoReLUDNN Regression

MoReLUDNN Regression