Note
Go to the end to download the full example code.
Linear Regression (Regression)#
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import required modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoElasticNet
Load and prepare dataset
ds = DataSet()
ds.load(name="BikeSharing")
ds.set_random_split()
ds.set_target("cnt")
ds.scale_numerical(features=("cnt",), method="log1p")
ds.preprocess()
Execute the preprocessing steps defined above#
Train model#
model = MoElasticNet(name="GLM",
feature_names=ds.feature_names,
feature_types=ds.feature_types,
alpha=0.01)
model.fit(ds.train_x, ds.train_y)
Basic accuracy analysis#
ts = TestSuite(ds, model)
results = ts.diagnose_accuracy_table()
results.table
Coefficient interpretation#
results = ts.interpret_coef(features=("season", "yr", "workingday", "weathersit"))
results.plot()
Feature importance#
results = ts.interpret_fi()
results.plot()
Main effect plot#
results = ts.interpret_effects(features="hr")
results.plot()
Local feature importance analysis#
results = ts.interpret_local_fi(dataset="train",
sample_index=15,
centered=True)
results.plot()
Local feature importance with linear coefficients#
results = ts.interpret_local_linear_fi(dataset="train",
sample_index=15,
centered=True)
results.plot()
Total running time of the script: (0 minutes 8.665 seconds)