Note
Go to the end to download the full example code.
GAMINet Classification#
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import required modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoGAMINetClassifier
Load and prepare dataset
ds = DataSet()
ds.load(name="TaiwanCredit")
ds.set_random_split()
ds.set_target("FlagDefault")
ds.scale_numerical(method="minmax")
ds.preprocess()
Train model#
model = MoGAMINetClassifier(random_state=0)
model.fit(ds.train_x, ds.train_y.ravel())
Basic accuracy analysis#
ts = TestSuite(ds, model)
results = ts.diagnose_accuracy_table()
results.table
Feature importance analysis#
results = ts.interpret_fi()
results.plot()
Global effects interpretation#
For numerical feature
results = ts.interpret_effects(features="PAY_1")
results.plot()
For categorical feature
results = ts.interpret_effects(features="EDUCATION")
results.plot()
For 2 features
results = ts.interpret_effects(features=("PAY_1", "PAY_2"))
results.plot()
Local feature importance analysis#
results = ts.interpret_local_fi(sample_index=1, centered=True)
results.plot()
Another sample in train set
results = ts.interpret_local_ei(dataset='train', sample_index=1)
results.plot()
Total running time of the script: (2 minutes 25.360 seconds)