Note
Go to the end to download the full example code.
Logistic Regression (Classification)#
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import required modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLogisticRegression
Load and prepare dataset
ds = DataSet()
ds.load(name="TaiwanCredit")
ds.set_random_split()
ds.set_target("FlagDefault")
Train model#
model = MoLogisticRegression(name="GLM",
feature_names=ds.feature_names,
feature_types=ds.feature_types)
model.fit(ds.train_x, ds.train_y)
# Basic accuracy analysis
# ----------------------------------------------------------
ts = TestSuite(ds, model)
results = ts.diagnose_accuracy_table()
results.table
Coefficient interpretation#
results = ts.interpret_coef(features=("PAY_1", "PAY_2", "PAY_3", "EDUCATION", "SEX"))
results.plot()
Feature importance#
results = ts.interpret_fi()
results.plot()
Main effect plot#
results = ts.interpret_effects(features="PAY_1")
results.plot()
Local feature importance analysis#
results = ts.interpret_local_fi(dataset="train",
sample_index=15,
centered=True)
results.plot()
Local feature importance with linear coefficients#
results = ts.interpret_local_linear_fi(dataset="test",
sample_index=15,
centered=True)
results.plot()
Total running time of the script: (0 minutes 3.890 seconds)