Logistic Regression (Classification)#

Installation

# To install the required package, use the following command:
# !pip install modeva

Authentication

# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')

Import required modules

from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLogisticRegression

Load and prepare dataset

ds = DataSet()
ds.load(name="TaiwanCredit")
ds.set_random_split()
ds.set_target("FlagDefault")

Train model#

model = MoLogisticRegression(name="GLM",
                             feature_names=ds.feature_names,
                             feature_types=ds.feature_types)
model.fit(ds.train_x, ds.train_y)


# Basic accuracy analysis
# ----------------------------------------------------------
ts = TestSuite(ds, model)
results = ts.diagnose_accuracy_table()
results.table
AUC ACC F1 LogLoss Brier
train 0.613720 0.777542 0.0 0.537809 0.175762
test 0.632926 0.783833 0.0 0.523983 0.170817
GAP 0.019206 0.006292 0.0 -0.013826 -0.004945


Coefficient interpretation#

results = ts.interpret_coef(features=("PAY_1", "PAY_2", "PAY_3", "EDUCATION", "SEX"))
results.plot()


Feature importance#

results = ts.interpret_fi()
results.plot()


Main effect plot#

results = ts.interpret_effects(features="PAY_1")
results.plot()


Local feature importance analysis#

results = ts.interpret_local_fi(dataset="train",
                                sample_index=15,
                                centered=True)
results.plot()


Local feature importance with linear coefficients#

results = ts.interpret_local_linear_fi(dataset="test",
                                       sample_index=15,
                                       centered=True)
results.plot()


Total running time of the script: (0 minutes 3.890 seconds)

Gallery generated by Sphinx-Gallery