Note
Go to the end to download the full example code.
Local Explainability#
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import modeva modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLGBMClassifier
Load Dataset
ds = DataSet()
ds.load(name="TaiwanCredit")
ds.set_random_split()
Train a LGBM model
model = MoLGBMClassifier(verbose=-1)
model.fit(ds.train_x, ds.train_y)
LIME#
ts = TestSuite(ds, model)
results = ts.explain_lime(dataset="test", sample_index=0, centered=False, random_state=0)
results.plot()
Baseline-(Kernel) SHAP (a single baseline sample)#
results = ts.explain_shap(dataset="test", sample_index=0,
baseline_dataset="train", baseline_sample_index=2024, random_state=0)
results.plot()
Baseline-(Kernel) SHAP (a group of baseline samples)#
results = ts.explain_shap(dataset="test", sample_index=0,
baseline_dataset="train", baseline_sample_size=200, random_state=0)
results.plot()
Total running time of the script: (0 minutes 6.689 seconds)