Note
Go to the end to download the full example code.
Global Explainability#
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import modeva modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLGBMRegressor
Load Dataset
ds = DataSet()
ds.load(name="BikeSharing")
ds.set_random_split()
ds.scale_numerical(features=("cnt",), method="log1p")
ds.preprocess()
Train a LGBM model
model = MoLGBMRegressor(verbose=-1)
model.fit(ds.train_x, ds.train_y)
Permutation feature importance#
ts = TestSuite(ds, model)
results = ts.explain_pfi(dataset='test', sample_size=2000, n_repeats=5, random_state=0)
results.plot(n_bars=10)
H-statistic#
results = ts.explain_hstatistic(features=('hr',
'atemp',
'season',
'holiday',
'hum'),
dataset='train', sample_size=2000, percentiles=(0, 1),
grid_resolution=10, response_method='auto', random_state=0)
results.table
1D Partial dependency plots#
results = ts.explain_pdp(features="hr", dataset='train', sample_size=2000, percentiles=(0, 1),
grid_resolution=10, response_method='auto', random_state=0)
results.plot()
2D Partial dependency plots#
results = ts.explain_pdp(features=("hum", "hr"), dataset="train")
results.plot()
1D ALE#
results = ts.explain_ale(features="hr", dataset='train', sample_size=2000,
grid_resolution=10, response_method='auto', random_state=0)
results.plot()
2D ALE#
results = ts.explain_ale(features=("hum", "hr"), dataset="train")
results.plot()
Total running time of the script: (0 minutes 14.142 seconds)