modeva.models.ModelBaseRegressor#
- class modeva.models.ModelBaseRegressor#
Base Class for Modeva Regressors.
- calibrate_interval(X, y, alpha=0.1, max_depth: int = 5)#
Fit a conformal prediction model to the given data.
This method computes the model’s prediction interval calibrated to the given data.
If the model is a regressor, splits the data with 50% for fitting lower (alpha / 5) and upper (1 - alpha / 2) gradient boosting trees-based quantile regression to the model’s residual; and 50% for calibration.
If the model is a binary classifiers, it computes the calibration quantile based on predicted probabilities for the positive class.
- Parameters:
X (X : np.ndarray of shape (n_samples, n_features)) – Feature matrix for prediction.
y (array-like of shape (n_samples, )) – Target values.
alpha (float, default=0.1) – Expected miscoverage for the conformal prediction.
max_depth (int, default=5) – Maximum depth of the gradient boosting trees for regression tasks. Only used when task_type is REGRESSION.
- Raises:
ValueError – If the model is neither a regressor nor a classifier.:
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- load(file_name: str)#
Load the model into memory from file system.
- Parameters:
file_name (str) – The path and name of the file.
- Return type:
estimator object
- predict(X)#
Model predictions, calling the child class’s ‘_predict’ method.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – Feature matrix for prediction.
- Returns:
np.ndarray
- Return type:
The (calibrated) final prediction
- predict_interval(X)#
Predict the prediction interval for the given data based on the conformal prediction model.
It splits the data with 50% for fitting lower (alpha / 5) and upper (1 - alpha / 2) gradient boosting trees-based quantile regression to the model’s residual; and 50% for calibration.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – Feature matrix for prediction.
- Returns:
np.ndarray – in the format [n_samples, 2] for regressors or a flattened array for classifiers.
- Return type:
The lower and upper bounds of the prediction intervals for each sample
- Raises:
ValueError – If fit_conformal has not been called to fit the conformal prediction model: before calling this method.
- save(file_name: str)#
Save the model into file system.
- Parameters:
file_name (str) – The path and name of the file.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance