Note
Go to the end to download the full example code.
Model Fairness Analysis (Classification)#
This example requires full licence, and the program will break if you use the trial licence.
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import required modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLGBMClassifier
from modeva.models import MoXGBClassifier
from modeva.data.utils.loading import load_builtin_data
from modeva.testsuite.utils.slicing_utils import get_data_info
Load and prepare dataset
data = load_builtin_data("TaiwanCredit").drop(['SEX', 'MARRIAGE', 'AGE'], axis=1)
ds = DataSet()
ds.load_dataframe(data.iloc[:5000])
ds.set_target("FlagDefault")
ds.set_random_split()
protected_data = load_builtin_data("TaiwanCredit")[['SEX', 'MARRIAGE', 'AGE']]
ds.set_protected_data(protected_data.iloc[:5000])
ds.set_raw_extra_data(name="oot", data=data.iloc[5000:])
ds.set_protected_extra_data(name="oot", data=protected_data.iloc[5000:])
Train models
model1 = MoXGBClassifier()
model1.fit(ds.train_x, ds.train_y)
model2 = MoLGBMClassifier(max_depth=2, verbose=-1, random_state=0)
model2.fit(ds.train_x.astype(float), ds.train_y.ravel().astype(float))
Basic fairness analysis#
ts = TestSuite(ds, model1)
Config protected and reference groups
group_config = {
"Gender-Male": {"feature": "SEX", "protected": 2.0, "reference": 1.0},
"Gender-Female": {"feature": "SEX", "protected": 1.0, "reference": 2.0},
"MARRIAGE": {"feature": "MARRIAGE", "protected": 2.0, "reference": 1.0},
"AGE": {"feature": "AGE", "protected": {"lower": 60, "lower_inclusive": True},
"reference": {"upper": 60, "upper_inclusive": False}}
}
Calculate adverse impact ratio (AIR)
results = ts.diagnose_fairness(group_config=group_config,
favorable_label=1,
metric="AIR",
threshold=0.8)
results.plot()
Check distribution drift of protected and reference groups (example for the “Gender-Male” group)
data_results = ds.data_drift_test(
**results.value["Gender-Male"]["data_info"],
distance_metric="PSI",
psi_method="uniform",
psi_bins=10
)
data_results.plot(name="summary")
Analyze data drift for single variable
data_results.plot(name=("density", "PAY_1"))
Slicing fairness analysis#
Single feature slicing
results = ts.diagnose_slicing_fairness(features="PAY_1",
group_config=group_config,
dataset="test",
metric="AIR")
results.plot()
Bivariate features slicing
results = ts.diagnose_slicing_fairness(features=("PAY_1", "BILL_AMT1"),
group_config=group_config,
dataset="test",
metric="AIR",
threshold=0.9)
results.plot(name="Gender-Male")
Batch mode single feature slicing
results = ts.diagnose_slicing_fairness(features=(("BILL_AMT1",), ("BILL_AMT2",), ("BILL_AMT3",)),
group_config=group_config,
dataset="test",
metric="AIR",
method="auto-xgb1", bins=5)
results.table["Gender-Male"]
Batch mode 1D Slicing (all features by setting features=None)
results = ts.diagnose_slicing_fairness(features=None,
group_config=group_config,
dataset="test",
metric="AIR",
method="auto-xgb1", bins=5)
results.table["Gender-Male"]
Analyze data drift
data_info = get_data_info(res_value=results.value["PAY_1"]["Gender-Male"])
data_results = ds.data_drift_test(
**data_info["PAY_1"],
distance_metric="PSI",
psi_method="uniform",
psi_bins=10
)
data_results.plot("summary")
Single feature density plot
data_results.plot(("density", "PAY_1"))
Fairness comparison#
tsc = TestSuite(ds, models=[model1, model2])
results = tsc.compare_fairness(group_config=group_config,
metric="AIR",
threshold=0.8)
results.plot()
Compare robustness performance of multiple models under single slicing feature
result = tsc.compare_slicing_fairness(features="BILL_AMT1",
group_config=group_config,
favorable_label=1,
dataset="test",
metric="AIR")
result.table["Gender-Male"]
Unfairness mitigation#
By adjusting threshold of predict proba
result = ts.diagnose_mitigate_unfair_thresholding(group_config=group_config,
favorable_label=1,
dataset="test",
metric="AIR",
performance_metric="AUC",
proba_cutoff=30)
result.plot("Gender-Male", figsize=(8, 5))
By binning features
result = ts.diagnose_mitigate_unfair_binning(group_config=group_config,
favorable_label=1,
dataset="test",
metric="AIR",
performance_metric="AUC",
binning_method='uniform',
bins=10)
result.plot("Gender-Male")
Total running time of the script: (0 minutes 13.040 seconds)