Note
Go to the end to download the full example code.
Robustness Analysis (Classification)#
This example demonstrates how to analyze model robustness for classification problems using various methods and metrics.
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import required modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLGBMClassifier
from modeva.models import MoXGBClassifier
from modeva.testsuite.utils.slicing_utils import get_data_info
Load and prepare dataset
ds = DataSet()
ds.load(name="TaiwanCredit")
ds.set_random_split()
Train models
model1 = MoXGBClassifier()
model1.fit(ds.train_x, ds.train_y)
model2 = MoLGBMClassifier(max_depth=2, verbose=-1, random_state=0)
model2.fit(ds.train_x, ds.train_y.ravel())
Basic robustness analysis#
ts = TestSuite(ds, model1)
results = ts.diagnose_robustness(perturb_features=("PAY_1", "EDUCATION",),
noise_levels=(0.1, 0.2, 0.3, 0.4),
metric="AUC")
results.table
Box plot of robustness performance
results.plot(figsize=(6, 5))
Analyze data drift between small and large prediction changes groups
data_results = ds.data_drift_test(**results.value[0.2]["data_info"],
distance_metric="PSI",
psi_method="uniform",
psi_bins=10)
data_results.plot("summary")
Analyze data drift for single variable
data_results.plot(("density", "PAY_1"))
Slicing robustness analysis#
Single feature slicing
results = ts.diagnose_slicing_robustness(features="PAY_1",
perturb_features=("PAY_1", "EDUCATION",),
noise_levels=0.1,
metric="AUC",
method="auto-xgb1",
threshold=0.7)
results.plot()
Analyze data drift for a specific feature
data_info = get_data_info(res_value=results.value)
data_results = ds.data_drift_test(**data_info["PAY_1"],
distance_metric="PSI",
psi_method="uniform",
psi_bins=10)
data_results.plot("summary")
Single feature density plot
data_results.plot(("density", "PAY_1"))
Bivariate feature slicing
results = ts.diagnose_slicing_robustness(features=("PAY_1", "PAY_2"),
perturb_features=("PAY_1", "EDUCATION",),
noise_levels=0.1,
metric="AUC",
threshold=0.7)
results.table
Batch mode single feature slicing
results = ts.diagnose_slicing_robustness(features=(("PAY_1",), ("PAY_2",), ("PAY_3",)),
perturb_features=("PAY_1", "EDUCATION",),
noise_levels=0.1,
perturb_method="quantile",
metric="AUC",
threshold=0.7)
results.table
Batch mode 1D Slicing (all features by setting features=None)
results = ts.diagnose_slicing_robustness(features=None,
perturb_features=("PAY_1", "EDUCATION",),
noise_levels=0.1,
perturb_method="quantile",
metric="AUC",
threshold=0.7)
results.table
Robustness comparison#
tsc = TestSuite(ds, models=[model1, model2])
Compare resilience performance of multiple models
results = tsc.compare_robustness(perturb_features=("PAY_1", "EDUCATION",),
noise_levels=(0.1, 0.2, 0.3, 0.4),
perturb_method="quantile",
metric="AUC")
results.plot(figsize=(6, 5))
Compare robustness performance of multiple models under single slicing feature
results = tsc.compare_slicing_robustness(features="PAY_1", noise_levels=0.1,
method="quantile", metric="AUC")
results.plot()
Total running time of the script: (0 minutes 22.228 seconds)