Note
Go to the end to download the full example code.
Particle Swarm Optimization Search#
Installation
# To install the required package, use the following command:
# !pip install modeva
Authentication
# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')
Import required modules
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoLGBMClassifier
from modeva.models import ModelTunePSO
Load Dataset
ds = DataSet()
ds.load(name="TaiwanCredit")
ds.set_random_split()
Run PSO search#
param_bounds = {"max_depth": [1, 4],
"learning_rate": [0.01, 1.0]}
param_types = {"max_depth": "int"}
model = MoLGBMClassifier(verbose=-1)
hpo = ModelTunePSO(dataset=ds, model=model)
result = hpo.run(param_bounds=param_bounds,
param_types=param_types,
n_iter=2,
n_particles=10,
metric=("AUC", "LogLoss"),
cv=5)
result.table
result.plot("parallel", figsize=(8, 6))
result.plot(("max_depth", "AUC"))
result.plot(("learning_rate", "AUC"))
Retrain model with best hyperparameter#
model_tuned = MoLGBMClassifier(**result.value["params"][0],
name="LGBM-Tuned",
verbose=-1)
model_tuned.fit(ds.train_x, ds.train_y)
model_tuned
Diagnose the tuned model#
ts = TestSuite(ds, model_tuned)
result = ts.diagnose_accuracy_table()
result.table
Total running time of the script: (3 minutes 42.383 seconds)