Wrapping Arbitrary Classifier#

This example requires full licence, and the program will break if you use the trial licence.

Installation

# To install the required package, use the following command:
# !pip install modeva

Authentication

# To get authentication, use the following command: (To get full access please replace the token to your own token)
# from modeva.utils.authenticate import authenticate
# authenticate(auth_code='eaaa4301-b140-484c-8e93-f9f633c8bacb')

Import required modules

import numpy as np
import pandas as pd
from modeva import DataSet
from modeva import TestSuite
from modeva.models import MoClassifier
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer

Scripts to build a model#

data = load_breast_cancer()
X, y = data.data, data.target  # Use California housing dataset
train_idx, test_idx = train_test_split(np.arange(data.data.shape[0]),
                                       test_size=0.2, random_state=42)

estimator = LGBMClassifier(verbose=-1)
estimator.fit(X[train_idx], y[train_idx])
LGBMClassifier(verbose=-1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Wrap the data into Modeva#

ds = DataSet()
ds.load_dataframe(pd.concat([pd.DataFrame(data.data, columns=data.feature_names),
                  pd.DataFrame(data.target, columns=[data.target_names[1]])], axis=1))
ds.set_train_idx(train_idx)
ds.set_test_idx(test_idx)

Wrap the model into Modeva#

def predict_proba_func(X):
    # X should be numpy array, and output should be of shape (X.shape[0], 2)
    return estimator.predict_proba(X)

model = MoClassifier(name="LGBM-arbitrary",
                     predict_proba_function=predict_proba_func)

Create test suite for diagnostics#

ts = TestSuite(ds, model)

Permutation feature importance

result = ts.explain_pfi()
result.plot()


LIME for local explanation

result = ts.explain_lime(sample_index=0)
result.plot()


Total running time of the script: (0 minutes 1.707 seconds)

Gallery generated by Sphinx-Gallery